Search results for "Infimum and supremum"
showing 10 items of 17 documents
Proper 1-ball contractive retractions in Banach spaces of measurable functions
2005
In this paper we consider the Wosko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all k > 1 for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct. 1. Introduction Let X be an infinite-dimensional Banach space with unit closed ball B(X) and unit sphere S(X). It is well known that, in this setting, there is a retraction of B(X) onto S(X), that is, a continuous mapping R : B(X) ! S(X) with Rx = x for all x 2 S(X). In (4) Benyamini and Sternf…
On two topological cardinal invariants of an order-theoretic flavour
2012
Noetherian type and Noetherian $\pi$-type are two cardinal functions which were introduced by Peregudov in 1997, capturing some properties studied earlier by the Russian School. Their behavior has been shown to be akin to that of the \emph{cellularity}, that is the supremum of the sizes of pairwise disjoint non-empty open sets in a topological space. Building on that analogy, we study the Noetherian $\pi$-type of $\kappa$-Suslin Lines, and we are able to determine it for every $\kappa$ up to the first singular cardinal. We then prove a consequence of Chang's Conjecture for $\aleph_\omega$ regarding the Noetherian type of countably supported box products which generalizes a result of Lajos S…
A solution of the minimum-time velocity planning problem based on lattice theory
2018
For a vehicle on an assigned path, we find the minimum-time speed law that satisfies kinematic and dynamic constraints, related to maximum speed and maximum tangential and transversal acceleration. We present a necessary and sufficient condition for the feasibility of the problem and a simple operator, based on the solution of two ordinary differential equations, which computes the optimal solution. Theoretically, we show that the problem feasible set, if not empty, is a lattice, whose supremum element corresponds to the optimal solution.
A pointwise selection principle for metric semigroup valued functions
2008
Abstract Let ∅ ≠ T ⊂ R , ( X , d , + ) be an additive commutative semigroup with metric d satisfying d ( x + z , y + z ) = d ( x , y ) for all x , y , z ∈ X , and X T the set of all functions from T into X . If n ∈ N and f , g ∈ X T , we set ν ( n , f , g , T ) = sup ∑ i = 1 n d ( f ( t i ) + g ( s i ) , g ( t i ) + f ( s i ) ) , where the supremum is taken over all numbers s 1 , … , s n , t 1 , … , t n from T such that s 1 ⩽ t 1 ⩽ s 2 ⩽ t 2 ⩽ ⋯ ⩽ s n ⩽ t n . We prove the following pointwise selection theorem: If a sequence of functions { f j } j ∈ N ⊂ X T is such that the closure in X of the set { f j ( t ) } j ∈ N is compact for each t ∈ T , and lim n → ∞ ( 1 n lim N → ∞ sup j , k ⩾ N , j…
An extension of Guo's theorem via k--contractive retractions
2006
Abstract Let X be a infinite-dimensional Banach space. We generalize Guo's Theorem [D.J. Guo, Eigenvalues and eigenvectors of nonlinear operators, Chinese Ann. Math. 2 (1981) 65–80 [English]] to k- ψ -contractions and condensing mappings, under a condition which depends on the infimum k ψ of all k ⩾ 1 for which there exists a k- ψ -contractive retraction of the closed unit ball of the space X onto its boundary.
Stochastic ordering of classical discrete distributions
2010
For several pairs $(P,Q)$ of classical distributions on $\N_0$, we show that their stochastic ordering $P\leq_{st} Q$ can be characterized by their extreme tail ordering equivalent to $ P(\{k_\ast \})/Q(\{k_\ast\}) \le 1 \le \lim_{k\to k^\ast} P(\{k\})/Q(\{k\})$, with $k_\ast$ and $k^\ast$ denoting the minimum and the supremum of the support of $P+Q$, and with the limit to be read as $P(\{k^\ast\})/Q(\{k^\ast\})$ for $k^\ast$ finite. This includes in particular all pairs where $P$ and $Q$ are both binomial ($b_{n_1,p_1} \leq_{st} b_{n_2,p_2}$ if and only if $n_1\le n_2$ and $(1-p_1)^{n_1}\ge(1-p_2)^{n_2}$, or $p_1=0$), both negative binomial ($b^-_{r_1,p_1}\leq_{st} b^-_{r_2,p_2}$ if and on…
Free sequences and the tightness of pseudoradial spaces
2019
Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelof Hausdorff almost radial space X and the set-tightness of every Lindelof Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhasz, Soukup, Szentmiklossy and Weiss by proving that if X is a Lindelof Hausdorff space, and $$X_\delta $$ denotes the $$G_\delta $$ topology on X then $$t(X_\delta ) \le 2^{t(X)}$$ . Finally, we exploit this to prove that if X is a Lindelof Hausdorff pseudoradial space then $$F(X_\delta ) \le 2^{F(X)}$$ .
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
2017
We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptanc…
Cyclic Complexity of Words
2014
We introduce and study a complexity function on words $c_x(n),$ called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length $n$ of an infinite word $x.$ We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if $x$ is a Sturmian word and $y$ is a word having the same cyclic complexity of $x,$ then up to renaming letters, $x$ and $y$ have the same set of factors. In particular, $y$ is also Sturmian of slope equ…
On closures of discrete sets
2018
The depth of a topological space $X$ ($g(X)$) is defined as the supremum of the cardinalities of closures of discrete subsets of $X$. Solving a problem of Mart\'inez-Ruiz, Ram\'irez-P\'aramo and Romero-Morales, we prove that the cardinal inequality $|X| \leq g(X)^{L(X) \cdot F(X)}$ holds for every Hausdorff space $X$, where $L(X)$ is the Lindel\"of number of $X$ and $F(X)$ is the supremum of the cardinalities of the free sequences in $X$.